A class of high-order weighted compact central schemes for solving hyperbolic conservation laws
نویسندگان
چکیده
We propose a class of weighted compact central schemes for solving hyperbolic conservation laws. The linear version can be considered as high-order extension the Lax–Friedrichs scheme and element solution scheme. On every cell, is approximated by Pth-order polynomial which all DOFs are stored updated separately. cell average classical finite volume constructed based on space-time staggered meshes such that fluxes continuous across interfaces adjacent control volumes and, therefore, local Riemann problem bypassed. kth-order spatial derivatives difference (k?1)th-order at vertices. All information calculated Cauchy–Kovalewski procedure. By doing so, able to achieve arbitrarily uniform stencil consisting only neighboring cells with one explicit time step. In order capture discontinuities without spurious oscillations, essentially non-oscillatory type limiter tailor-made schemes. preserves compactness accuracy schemes' accuracy, robustness, efficiency verified several numerical examples scalar laws compressible Euler equations.
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملHigh-Order Central Schemes for Hyperbolic Systems of Conservation Laws
A family of shock capturing schemes for the approximate solution of hyperbolic systems of conservation laws is presented. The schemes are based on a modified ENO reconstruction of pointwise values from cell averages and on approximate computation of the flux on cell boundaries. The use of a staggered grid avoids the need of a Riemann solver. The integral of the fluxes is computed by Simpson’s r...
متن کاملHigh-order central-upwind schemes for hyperbolic conservation laws
We study central-upwind schemes for systems of hyperbolic conservation laws, recently introduced in [A. Kurganov, S. Noelle and G. Petrova, SIAM J. Sci. Comput., 23 (2001), pp. 707–740]. Similarly to the staggered central schemes, these schemes are central Godunov-type projection-evolution methods that enjoy the advantages of high resolution, simplicity, universality, and robustness. At the sam...
متن کاملHigh-resolution finite compact difference schemes for hyperbolic conservation laws
A finite compact (FC) difference scheme requiring only bi-diagonal matrix inversion is proposed by using the known high-resolution flux. Introducing TVD or ENO limiters in the numerical flux, several high-resolution FC-schemes of hyperbolic conservation law are developed, including the FC-TVD, third-order FC-ENO and fifth-order FC-ENO schemes. Boundary conditions formulated need only one unknow...
متن کاملHigh Resolution Schemes for Hyperbolic Conservation Laws
A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2022
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2022.111370